[IMLE] - [2024Winter] - [en] - [Machine Learning Essentials]


Machine Learning Essentials [2024 SoSe]
Code
IMLE
Name
Machine Learning Essentials
CP
8
Duration
one semester
Offered
in (irregular) alternation with *Fundamentals of Machine Learning* + *Advanced Machine Learning*
Format
Lecture 4 SWS + Exercise course 2 SWS
Workload
Arbeitsaufwand: 240h, thereof
60h lecture
90h tutorials, homework, lecture wrap-up
90h graded final report
Availability
This is the retitled *Machine Learning* module!
cannot be combined with *Fundamentals of Machine Learning* or *Advanced Machine Learning*
M.Sc. Angewandte Informatik
M.Sc. Data and Computer Science
M.Sc. Scientific Computing
Language
English
Lecturer(s)
Ullrich Köthe
Examination scheme
Learning objectives Students understand a broad range of machine learning concepts, get to know established and advanced learning methods and algorithms, are able to apply them to real-world problems, and can objectively assess the quality of the results.
In addition, students learn how to use Python-based machine learning software such as scikit-learn.
Learning content This lecture is a compact version of the two-semester course *Fundamentals of Machine Learning* + *Advanced Machine Learning*:
Classification (linear and quadratic discriminant analysis, neural networks, linear and kernelized support vector machines, decision trees and random forests), least squares and regularized regression, Gaussian processes, unsupervised learning (density estimation, cluster analysis, Gaussian mixture models and expectation maximization, principal component analysis, bilinear decompositions), directed probabilistic graphical models, optimization for machine learning, structured learning
Requirements for participation recommended are: solid knowledge of basic calculus, statistics, and linear algebra
Requirements for the assignment of credits and final grade This is the retitled *Machine Learning* module!

The module is completed with a graded written examination. This examination is a report on a 90 h mini-research project. The final grade of the module is determined by the grade of the examination. The requirements for the assignment of credits follows the regulations in section modalities for examinations. Details will be given by the lecturer.
Useful literature Trevor Hastie, Robert Tibshirani, Jerome Friedman: The Elements of Statistical Learning (2nd edition), Springer, 2009;
David Barber: Bayesian Reasoning and Machine Learning, Cambridge University Press, 2012