Ruprecht-Karls-Universität Heidelberg
Siegel der Universität Heidelberg

Module for [Scientific Computing]

[back] to List of Modules.

[Computational Geometry] - [2015 Sommer]

Module Code
IAGM
Name
Computational Geometry
Credit Points
4 LP CP
Workload
120 h
Duration
ein Semester
Cycle
0
Methods Lecture 2 h + Exercise course 1 h
Objectives The students have a firm command of the fundamental algorithms and data structures of computational geometry and can implement them.
Content Fundamental concepts of computational geometry such as convex hull and polygon triangulation. Efficient point location Voronoi diagrams Delaunay triangulation Search structures Algorithmic complexity
Learning outcomes The students know and understand central algorithms from computational geometry. Can implement efficient algorithms for geometrical problems. Can weigh up different strategies and choose appropriate ones.
Prerequisitesnone
Suggested previous knowledge IAD
Assessments assignments, written or oral exam
Literature J. O'Rouke: Computational Geometry in C, Cambridge University Press, 1998.
H. Edelsbrunner: Geometry and Topology of Mesh Generation, Cambridge University Press, 2001.
Mark de Berg, Otfried Cheong, Marc van Kreveld, Mark Overmars: Computational Geometry - Algorithms and Applications, 3rd edition, Springer, 2008.
Aktuelle Fachveröffentlichungen
zum Seitenanfang