Ruprecht-Karls-Universität Heidelberg
Siegel der Universität Heidelberg

Module for [Scientific Computing]

[back] to List of Modules.

[Geometric Modeling and Animation] - [2015 Sommer]

Module Code
Geometric Modeling and Animation
Credit Points
240 h; thereof 90 h on-campus program 15 h exam preparation 135 h independent study and exercises (possibly in groups)
one semester
Methods Lecture 4 SWS, Exercise 2 SWS
Content Introduction to curves Interpolating curves Bézier curves B-Splines Rational curves Introduction to surfaces Tensor product surfaces Transfinite surfaces and extrusion Subdivision Subdivision surfaces Animation and simulation Rigid body kinematics Particle systems Mass-spring models Cloth modeling Numerical methods for differential equations Collision detection and handling Fluid simulation and natural phenomena
Learning outcomes The students know the mathematical foundations of geometric modeling know the mathematical and physical foundations of computer animation know the algorithms and implementation aspects are familiar with the basics of animated movies are able to apply existing tools for geometric modeling and animation
Suggested previous knowledge Einführung in die Praktische Informatik (IPI), Programmierkurs (IPK), Algorithmen und Datenstrukturen (IAD)
Assessments Successful participation in the exercises (more than 50 % have to be scored) und passing a written or oral exam
Literature - Curves and Surfaces for CAGD – A Practical Guide, G. Farin, Morgan Kaufmann, 2002
- Computer Animation – Algorithms and Techniques, R. Parent, Morgan Kaufmann, 2002
- 3D Game Engine Design: A Practical Approach to Real-Time Computer Graphics, D. Eberly, Morgan Kaufmann, 2000
- Graphische Datenverarbeitung I, J. Encarnacao, W. Straßer, R. Klein, 4. Auflage, Oldenbourg 1996
- Advanced Animation and Rendering Techniques, A. Watt, M. Watt, Addison-Wesley, 1992
- Grundlagen der geometrischen Datenverarbeitung, J. Hoschek, D. Lasser, Teubner 1992
- Numerical Recipes – The Art of Scientific Computing, W.H. Press, P. Flannery, S.A. Teukolsky, W.T. Vetterling, Cambridge University Press, 1986
zum Seitenanfang